一、数据思维的价值?
数据思维是指提高数据及其应用的意识,知道从数据出发和使用数据解决问题的思路。
数据思维的价值是从对客观现象、过去和现在正在发生的情况进行认识,以便从数据的角度再现象发展变化的过程及其状态;同时,可以帮助人们找到现实或问题产生的原因,提供管理行动方案和建议。
二、数据思维的支撑?
数据思维需要有基础数据的支撑。因为数据思维是指用数据来分析和解决问题的能力,如果没有可靠的基础数据,就很难进行有效的分析和解决问题。同时,也需要有运用数据工具和方法的能力,才能更好地应用数据来解决问题。现在随着信息化的发展,数据的采集、存储和处理变得越来越便利,人们有了更多的机会运用数据思维。而且数据思维的应用范围也越来越广泛,不仅是在企业和科研机构中,也在教育、医疗、社会和政府等领域中得到了广泛运用。因此,不断学习和提高数据思维能力是非常重要的。
三、什么数据思维?
数据思维是指把营销过程中的各项因素转化成数据进行研究。数据实际上是营销的科学导向的自然演化。
1.定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面。
2.相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好。
3.实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。
这就是三个数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。
第一步:进行数据的基本管理,先得有数,这里面第一个要有数据意识,看到一些重要的数据要把它记下来,不管是记在头脑当中还是电脑里面,要有这种意识。同时也要求门店或者下属,或者代理商要实时准确客观地传递数据,对企业来讲如果门店没有实时管理这些数据,谈数据化管理就是白谈。
第二步:是要有养数据的意识,我们常常到数据都会想到数据,但是现在很多零售企业都误解了数据这个词,运用数据并不一定就是大数据。传统领域的数据往往都是小数据,离大数据还有很远的距离。特别是很多零售店铺连最基本的数据都没有,现在相当多的零售店铺采用手工输入存储数据的方式。所以数据思维归根结底先得有数据,再去积累数据,最后把数据运用到业务中去,我们才能谈得上去做分析,去做绩效考核,去做管理。
四、数据化思维的概念?
所谓的数据化思维是指根据数据来思考事物的一种思维模式,是一种量化的、重视事实、追求真理的思维模式。
数据思维并不只是将事物单纯地数字化,而是要求能够理性地对数据进行处理和分析,讲求逻辑推理,找出数据背后的真相。即根据数据能够知道发生了什么,为什么会这样发生,有什么样的规律,从而形成定性结论。
五、什么是数据思维和大数据思维及其特点?
一、全局大局思维
大数据研究的对象是所有样本,而非抽样数据,关注样本中的主流,而非个别,这要求应用人员必须有全局和大局思维。
二、开放包融思维
数据分享、信息公开在分享资源的同时,也在释放善意,取得互信,在数据交换的基础上产生合作,这将打破传统封闭与垄断,形成开 放、共享、合作思维。大数据不仅关注数据的因果关系,更多的是相关性,提高数据采集频度,而放宽了数据的精确度,容错率提高,用概率看待问题,使人们的包 融思维得以强化。
三、优质服务思维
互联网通过免费的基本服务换来了大量客户数据的积累,从经济学角度来看,所有的免费都是不可持续的。这要求大数据使用者有能力依靠挖掘数据,改变价值的生成基础和价值链条的新价值,用更优质服务、提升变现能力来实现可持续发展。
四、学习趋势思维
研究数据相关性,使人们更容易提前发现事物的规律,预测事物进展的趋势,大数据就是通过成功的预测而引起广泛关注的。
五、成本控制思维
原来的社会治理模式中,用增量来配置社会资源,机构和人员不断扩大,成本不断加大。大数据让社会资源的存量得以精确配置,高效使用,避免忙闲不均,社会治理由劳动密集型到技术动态调度转变。
六、创造性思维
创造性思维是大数据思维方式的特性之一,通过对数据的重组、扩展和再利用,突破原有的框架,开拓新领域、确立新决策,发现隐藏在表面之下的数据价值,数据也创造性地成为了可重复使用的“再生性”资源。
六、数据思维应用流程?
数据思维应用的流程的步骤:1.明确问题
要确认需求是什么,为什么要分析这些数据,是为了提高销量还是其他什么的。最重要的一点是要详细了解所分析数据所在的团队业务。
2.分解问题
找全影响业务的数据因子(从各个维度进行分析,少任何一个都可能造成后续分析问题不准确)
整体-->个体(横向纵向交叉分析)
定量(有效的比较,环比&同比)&定性
3.评估判断
4.决策(不要轻易做决策,反复分析之后才上报)
七、什么是数据思维?
答:一、数据思维是根据数据来思考事物的一种思维模式,是一种量化的思维模式,是重视事实、追求真理的思维模式。
二、企业在管理过程中,依靠数据发现问题、分析问题、解决问题、跟踪问题的管理方式,就是数据化管理。
三、“数据化思维”是个新词。但其中的内涵,并不是个新鲜事物。所谓新鲜的成分,是我们对数据的解读有了另一种认知,或者说思维方式。
八、怎样掌握数据思维?
要想要掌握数据思维,就需要学会数据,整理数据分析以及数据整合,要知道,到时候的数据如何进行更好的归类,让它有价值
九、数据工程师和大数据工程师的区别?
数据工程师和大数据工程师在职责和技能上有一些区别,尽管两者都与数据相关,但其侧重点略有不同。
数据工程师主要负责设计和构建数据管道(Data Pipeline)以及数据仓库(Data Warehouse),以支持数据的提取、转换和加载(ETL)过程。他们使用各种工具和技术,如SQL、编程语言、ETL工具等,将数据从不同的来源整合并转换为结构化的格式,供数据分析和业务使用。数据工程师还负责确保数据的质量、一致性和安全性。
大数据工程师则更专注于处理和管理海量数据,通常涉及大规模的数据存储和分布式计算系统。他们使用大数据技术栈,如Hadoop、Spark、NoSQL数据库等,来处理、分析和存储大规模数据集。大数据工程师需要了解分布式系统的原理和架构,以构建可扩展、高效的数据处理和分析平台。
因此,数据工程师的职责主要集中在数据整合、ETL流程和数据仓库的构建上,而大数据工程师则更关注海量数据的处理、分析和存储,通常需要使用分布式系统和大数据技术。
需要注意的是,实际岗位中的具体职责和技能要求可能有所不同,不同公司和行业对这两个角色的定义和要求也会有所差异。
十、什么是数据的乘法思维?
乘法思维,简单来说,我们分析的对象是以乘法的形式变化或产生影响,而不是加法的方式。我们人类最直觉的认识世界,是加(减)法的形式,吃几顿饭,看几本书,走多少路,遇见多少人。但是,这个世界的变化和影响的施加,却是以“乘法”的方式进行。
最重要的一些乘法思维的表现形式:
1、复利:这是一个金融领域的概念,你在银行存款,利率多是按照复利的方式计算,就是今天的本金加上利率,成为第二年的本金,最终产生利滚利的效果。复利就是典型的“乘法”,而不是加法。5%的利率,今年的收入增长是1.05,明天是1.05*1.05,以此类推。
2、摩尔定律:这是科技领域的概念,可以简单理解为“每两年芯片上晶体管数量增加一倍,价格便宜一半”。其背后也是“乘法”的原理,每一年增加的科技成果,将会对下一年的科技进步产生影响。
3、知识积累:这是关系到每一个人的,你自己知识的积累和能力的提升,不是加法,而是乘法。假设你每年都读20本书,但你第一年的知识和能力不是一个加法关系,你的知识会产生相互影响,逐步形成体系,你分析和解决问题的能力是按照乘法的规律展开。
也正因为知识积累的乘法效果,资本的复利效果、资源和科技力量的乘法效果,最终表现出人与人的差距在不断拉大(你可以比较一下30年前、甚至100年前世界前10%与后10%的人收入水平差距)、地区与地区发展水平的绝对差距是在不断拉大的。