返回首页

plc毕业论文设计

133 2023-10-21 13:24 admin

PLC的自动送料小车

摘 要

编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。对早期的PLC,凡是有继电器的地方,都可采用。而对当今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC。尤其是近几年来,PLC的成本下降,功能又不段增强,所以,目前PLC在国内外已被广泛应用于各个行业。

本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。

本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图旅念、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。

关键词:PLC,送料小车,控制,程序设计

目 录

前 言 1

第1章 控制系统介绍和控制过程要求 2

1.1 控制系统在送料小车中的作用与地位 2

1.2 控制系统介绍 2

第2章 送料小车系统方案的选择 4

2.1 可编程控制器 PLC的优点 4

2.2 小车送料系统方案的选择 5

第3章 基于PLC的送料小车接线图及梯形图 6

3.1 送料小车PLC的 I/O分配表 6

3.2 PLC端子接线图 7

3.3 梯形图分段设计 8

3.4 程序运行原理说明调试与完善 13

3.5 系统总梯形图设计 13

3.6 小车程序设计 18

结 论 23

谢 辞 24

参考文献 25

前 言

随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。

送料小车控制系统采用了PLC控制。从送料小车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此送料小车电气控制系统设计具有手动和自动两种工作方式。我在程序设计上采用了模块化的设计方法,这样就省去了工作方式程序之间复杂的联锁关系,从而在设计和修改任何一种工作方式的程序时,不会对其它工作方式的程序造成影响,使得程序的设计、修改和故障查找工作大为简化。

在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解拆租困了更多的PLC知识。

第1章 控制系统介绍和控制过程要求

1.1 控制系统在送料小车中的作用与地位

在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。

控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。

送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密不可分。

1.2 控制系统介绍

图1-1 送料小车

本控制系统只要是用于控制送料小车的自动送料。它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。如图1-1,推车机可以沿轨道上下移动,到达预定位置。推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。

用PLC对送料小车实现控制,其具体要求如下:

(1) 送料小车1动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ1,SQ2,SQ3,SQ4)分别受PLC的I0.0,I0.1,I0.2,I0.3检测,当信号状态为1是,说明运料小车到达该位置。小车行走受型胡两个信号的驱动,Q0.4驱动小车左行,Q0.5驱动小车右行。料仓要料由4个手动按钮(SB1,SB2,SB3,SB4)发出(对应于PLC为I0.4,I0.5,I0.6,I0.7)按钮发出信号其相应指示灯就亮(HL1-HL4),指示灯受PLC的Q0.0-Q0.3控制。

送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的I1.0,I1.1,I1.2,I1.3检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q1.5驱动小车左行,Q1.4驱动小车右行。料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为I1.4,I1.5,I1.6,I1.7)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的Q1.0-Q1.3控制。

(2)运料小车行走条件:

运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。

运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料。

运料小车停止条件:要料仓位与小车的车位相同时,应该是小车的停止条件。

运料小车的互锁条件:小车右行时不允许左行启动,同样小车左行时也不允许右行启动。

第2章 送料小车系统方案的选择

2.1 可编程控制器 PLC的优点

可编程控制器 PLC对用户来说,是一种无触点设备,改变程序即可改变生产工艺。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的推广应用。可编程控制器是面向用户的专用工业控制计算机,具有许多明显的特点。

1. 可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如西门子公司生产的S7系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。

2. 配套齐全,功能完善,适用性强

PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

3. 易学易用,深受工程技术人员欢迎

PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

4. 系统的设计、建造工作量小,维护方便,容易改造

PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。

5. 体积小,重量轻,能耗低

以超小型PLC为例,新近出产的品种底部尺寸小于100 mm,重量小于150 g,功耗仅数瓦。由于体积小,很容易装入机械内部,是实现机电一体化的理想控制设备。

2.2 小车送料系统方案的选择

实现小车送料系统控制有很多方法来实现,可以用单片机、可编程控制器PLC等元器件来实现。

但在单片机控制系统电路中需要加入A/D,D/A转换器,线路复杂,还要分配大量的中断口地址。而且单片机控制电路易受外界环境的干扰,也具有不稳定性。另外控制程序需要具有一定编程能力的人才能编译出,在维修时也需要高技术的人员才能修复,所以在此也不易用单片机来实现。

而从上述第一节对PLC的特点了解可知,PLC具有很多优点,因此我们归纳出:可编程控制器PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;安装,操作和维护也较容易;编程简单,PLC的基本指令不多,编程器使用比较方便,程序设计和产品调试周期短,具有很好的经济效益。此外PLC内部定时、计数资源丰富,可以方便地实现对送料小车的控制。

因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。

第3章 基于PLC的送料小车接线图及梯形图

3.1 送料小车PLC的 I/O分配表

输入点分配 输出点分配

输入接点 输入开关名称 输出接口 驱动设备

I0.0-I0.3 小车1行程开关

(SQ1-SQ4) Q0.0-Q0.3 小车1要料指示灯

(HL1-HL4)

I0.4-I0.7 小车1控制按钮

(SB1-SB4) Q0.4-Q0.5 小车1左右行线圈

I1.0-I1.3 小车2行程开关

(SQ11-SQ14) Q0.6-Q0.7 油缸1伸出缩回

线圈

I1.4-1.7 小车2控制按钮

(SB11-SB14) Q1.0-Q1.0 小车2要料指示灯

(HL11-HL14)

I2.0-I2.5 推车机行程开关

(SQ5-SQ10) Q1.4-Q1.5 小车2左右行线圈

I2.6-I2.7 起动,停止按钮

(SB5,SB6) Q1.6-Q1.7 油缸2伸出缩回

线圈

I3.0-I3.1 手动,连续

转换开关(SA6,SA7) Q2.0-Q2.1 推车机上下行线圈

I3.2-I3.3 推车机上下,左右

转换开关 (SA1,SA2)

I3.4-I3.6 油缸单动联动

转换开关(SA3-SA5)

3-1 I/O分配表

根据控制要求,PLC控制送料小车的输入\输出(I\0)地址编排如下表所示,其中SB5为启动开关,为SB6停止开关,SA6、SA7为手动\连续选择开关,SA1、SA2为上下、左右转换开关,SA3、SA4、SA5为油缸单动联动转换开关。Q0.0-Q0.3和Q1.0-Q1.3控制8个要料指示灯,Q0.4-Q0.5和Q1.4-Q1.5控制小车1、2左行右行,Q0.6-Q0.7和Q1.6-Q1.7。如表3-1所示:

3.2 PLC端子接线图

PLC型号的选择:由于该系统是在原来CPU226的基础上改进的设备,而现在共用了31个输入,用直流24V;18个输出,用交流电220V,所以我选择用S7-200系列CPU226,加一个EM223的扩展模块。CPU226的主要的技术参数:输入24VDC,24点;输出220VAC,16点;电源电压为AC100—240V 50/60Hz。

EM223的主要技术参数:输入24VDC,8点;输出220VAC,8点;电源电压为AC100—240V 50/60Hz。如图3-1所示:

图3-1 端子接线图

3.3 梯形图分段设计

本次设计的自动送料小车梯形图,是分开来画的。由总程序结构图、自动操作程序图、手动操作程序图、小车1左右自动送料运行程序图、小车2左右自动送料运行程序图组成。

图3-2 总系统结构图

(1)程序的总结构图如图3-2所示:因为在手动操作方式下,各种动作都是用按钮控制来实现的,其程序可独立于自动操作程序而另行设计。因此,总程序可分为两段独立的部分:手动操作程序和自动操作程序。当选择手动操作时,则输入点I3.0接通,其常闭触点断开,执行手动程序,并由于I3.1的常闭触点为闭合,则跳过自动程序。若选择自动操作方式,将跳过手动程序段而执行自动程序。

(2)自动程序设计,自动操作控制主要是由行程开关来控制推车机的上行、下行,两缸的伸出、缩回。通过行程开关的上限、下限、左限、右限准确的控制推车机到达预定位置。自动程序时,手动自动转换开关拨到连续档SA7,按下启动按钮SB6,推车机上行,碰到上位行车开关SQ6,上行停止;同时两个油缸动作,推动两小车向左移动,小车1、2碰到左位行程开关SQ10、SQ5,说明两小车到位,这时各个仓位可向小车要料;而且两油缸缩回,碰到行程右位开关SQ8、SQ9停止收缩,推车机下行到行程开关位SQ7时停止。如图3-3所示:

图3-3 自动操作程序图

(3)手动操作程序的设计,手动操作控制简单,可按照一般继电器控制系统的逻辑设计法来设计。手动程序时,手动自动转换开关拨到手动档SA6,上下、左右转换开关拨到上/下行档时,按启动按钮SB5推车机上行,按停止按钮SB6推车机下行;上下、左右转换开关拨到左/右档时,拨动单动联动转换开关SA3(缸1动作),按启动按钮SB5,缸1伸出推动小车1左行;按停止按钮SB6,缸1缩回;拨动转换开关到SA5(缸2动作),按启动按钮SB5,缸2伸出推动小车2左行,按停止按钮SB6,缸2缩回;拨动单动联动转换开关到SA4(两缸同时动作)按启动按钮SB5,两缸伸出推动两小车左行;按停止按钮SB6,两缸缩回。如图3-4所示:

图3-4 手动操作程序图

(4)小车1自动送料运行程序,把小车1送到指定位置后,四个仓位就可以向小车要料了,M0.0-M0.3分别代表小车1的1号料仓到4号料仓的要料状态,运料小车1当前所处位置由I0.0-I0.3,运料小车1的右行,左行,停止控制由Q0.4、Q0.5。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。(上微分操作的注意事项,上微分脉冲只存在在一个扫描周期,接受这一脉冲控制的元件应写在这一脉冲出现的语句之后)。小车1自动送料图如下图3-5所示:

图3-5 小车1左右自动送料运行程序图

(5)小车2自动送料运行程序,把小车2送到指定位置后,四个仓位就可以向小车要料了,M1.0-M1.3分别代表小车2的1号料仓到4号料仓的要料状态。运料小车2当前所处位置由I1.0-I1.3,运料小车2的右行,左行,停止控制由Q1.4、Q1.5。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。

小车2自动送料图3-6所示:

图3-6 小车2左右自动送料运行程序图

3.4 程序运行原理说明调试与完善

本程序是用梯形图所写的。在运行前,先选择工作方式,手动/自动。选择手动SA6时,把上/下、左/右转换开关旋转到上/下档SA1,按下SB5起动点动按钮,推车机上行,按下SB6停止点动按钮,推车机下行;把上/下、左/右转换开关旋转到左/右档SA2,再选择小车的单动、联动控制,小车1单动时把单动/联动转换开关旋转到单动档SA3,两小车联动时旋转到联动档SA4,小车2单动时旋转到单动档SA5,这时按下起动按钮SB5,油缸推动小车左行,按下停止按钮SB6,油缸缩回。选择自动SA7时,按下起动按钮SB5,推车机开始上行,碰到上限行程开关SQ6时停车,两缸自动推出小车,小车碰到左限行程开关SQ5、SQ10时,说明小车到位,各个仓位可以向小车要料,这时两缸自动缩回,碰到右限行程开关SQ8、SQ9时,推车机自动下行,下行到位后(碰到SQ7)停车。只有再次按下起动按钮SB5,才能再次运行。

手动程序中设置了联锁和保护电路。如推车机的上行、下行常闭触点的联锁,推车机上下行行程有行程开关SQ6、SQ7控制保护。自动程序是根据推车机的位置、油缸的位置来控制电路执行下一条指令的。

油缸把小车推到位后,小车处于准备送料的初始位置,这时1-4号仓位都可以向小车要料。本设计中要料时刻不同时,先要料者优先,但是要料时刻相同时,却不知道小车向哪个仓位送料,需要改进。

3.5 系统总梯形图设计

由以上,我们画出送料小车系统的总梯形图,其中包括推车机的手动控制程序、自动控制程序、送料小车1控制程序、送料小车2控制程序。

如下图3-7所示:

图3-7送料小车梯形图(a)

图3-7 送料小车梯形图(b)

图3-7 送料小车梯形图(c)

图3-7 送料小车梯形图(d)

3.6 小车程序设计

由系统总梯形图,我们写出送料小车的程序指令,如下表3-2所示:

表3-2 送料小车程序指令表

LDN I3.0 A I3.3

JMP 0 A I2.6

LD I3.2 AN I2.4

LPS = Q1.6

A I2.6 LD I2.4

AN I2.0 O M2.2

= Q2.0 AN I1.3

LPP = M2.2

A I2.7 LD I3.4

AN I2.1 O M2.0

= Q2.1 A I3.3

LD I3.5 A I2.7

= M2.0 AN I2.2

LD I3.4 = Q0.7

O M2.0 LD I3.6

A I3.3 O M2.0

A I3.3 A I3.3

A I2.6 A I2.7

AN I2.5 AN I2.3

= Q0.6 = Q1.7

LD I2.5 LBL 0

O M2.1 LDN I3.1

AN I0.3 JMP 1

= M2.1 LD I2.6

LD I3.6 O Q2.0

O M2.0 AN I2.0

AN Q2.1 O Q1.7

AN I2.7 AN I2.3

= Q2.0 AN Q1.6

LD I2.0 AN I2.7

O Q0.6 = Q1.7

AN I2.5 LD I2.5

AN Q0.7 AN I2.4

AN I2.7 O Q2.1

= Q0.6 AN Q2.0

LD I2.5 AN I2.1

O M2.1 AN I2.7

AN I0.3 = Q2.1

= M2.1 LBL 1

LD I2.0 LD I0.4

O Q1.6 AN M0.1

AN I2.4 AN M0.2

AN Q1.7 AN M0.3

AN I2.7 S M0.0 1

= Q1.6 S Q0.0 1

LD I2.4 LD I0.5

O M2.2 AN M0.0

AN I1.3 AN M0.2

= M2.2 AN M0.3

LD I2.5 S M0.1 1

O Q0.7 S Q0.1 1

AN I2.2 LD I0.6

AN Q0.6 AN M0.0

AN I2.7 AN M0.1

= Q0.7 AN M0.3

LD I2.4 S M0.2 1

S Q0.2 1 A I0.5

LD I0.7 OLD

AN M0.0 AN Q0.5

AN M0.1 S Q0.4

AN M0.2 LD I0.3

S M0.3 1 O I0.2

S Q0.3 1 O I0.1

LD I0.0 O M2.1

A M0.0 A I0.4

LD I0.1 LD I0.3

A M0.1 O I0.2

OLD O M2.1

LD I0.2 A I0.5

A M0.2 OLD

OLD LD I0.3

LD I0.3 O M2.1

A M0.3 A I0.6

OLD OLD

EU LD M2.1

R Q0.0 6 A I0.7

R M0.0 4 OLD

LD I0.0 AN Q0.4

O I0.1 S Q0.5 1

O I0.2 LD I1.4

A I.7 AN M1.1

LD I0.0 AN M1.2

O I0.1 AN M1.3

A I0.6 S M1.0 1

OLD S Q1.0 1

LD I0.0 LD I1.5

AN M1.0 LD I1.0

AN M1.2 O I1.1

AN M1.3 O I1.2

S M1.1 1 A I1.7

S Q1.1 1 LD I1.0

LD I1.6 O I1.1

AN M1.0 A I1.6

AN M1.1 OLD

AN M1.3 LD I1.0

S M1.2 1 A I1.5

S Q1.2 1 OLD

LD I1.7 AN Q1.5

AN M1.0 S Q1.4 1

AN M1.1 LD I1.3

AN M1.2 O I1.2

S M1.3 1 O I1.1

S Q1.3 1 O M2.2

LD I1.0 A I1.4

A M1.0 LD I1.3

LD I1.1 O I1.2

A M1.1 O M2.2

OLD A I1.5

LD I1.2 OLD

A M1.2 LD I1.3

OLD O M2.2

LD I1.3 A I1.6

A M1.3 OLD

EU LD M2.2

R Q1.0 6 A I1.7

R M1.0 4 OLD

AN Q1.4

S Q1.5 1

结 论

在做这个设计中,我学会了很多以前没学过的知识,也巩固了很多以前没学好的知识,使我的专业理论知识更加扎实,软件操作更加熟练了。做完这个设计后,我得出几个结论如下:

一、送料小车在硬件设计中,加入了扩展模块,可以在触点不够的情况下方便地实现该小车的系统控制;然后软件设计中,运用了上微分指令,简化了程序,还运用了互锁和联锁,确保了系统的正常运行,减少了系统的故障点。在送料小车的系统中加入了手动操作程序,便于设备的维修,方便操作人员操作。

二、该小车系统在实施的情况下,其成本价格比较高。

三、该小车控制系统的研究方向:由于本小车系统并不完善,只做了送料,没有设计小车怎么装料和小车到料仓后送料的多少。这两方面是该系统设计的完善,是将来的研究方向。

最后,经过这次毕业设计培养了我们的设计能力以及全面的考虑问题能力。学习的过程是痛苦的但是收获成功的喜悦更是让人激动的。相信通过这次毕业设计它对我以后的学习及工作都会产生积极的影响。

谢 辞

本论文是在余炳辉导师亲自指导下完成的。导师在学业上给了我很大的帮助,使我在设计过程中避免了许多无为的工作。导师一丝不苟、严谨认真的治学态度,精益求精、诲人不倦的学者风范,以及正直无私、磊落大度的高尚品格,更让我明白许多做人的道理,在此我对导师表示衷心的感谢!

本论文能够完成,要感谢机电学院的所有老师,是他们在这三年的时间里,教会我的专业知识。在我撰写论文期间,得到了我的指导老师的帮助,在忙碌的工作之余,给予我专业知识上的指导,而且教给我学习的方法和思路,使我在科研工作及论文设计过程中不断有新的认识和提高。导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。多得他们的指导和帮助才使我能完成本论文。我会在以后的工作中为社会作出贡献去回报他们对我的教导。希望每个人都和我一样,通过做毕业设计,能够学到很多的知识与道理,大家都能用一颗热诚的心去投身未来的工作,报效祖国、父母、老师。

在本文结束之际,特向我敬爱的导师和机电学院所有老师致以最崇高的敬礼和深深的感谢!

参考文献

[1] 张结,黄德斌,唐毅.应用标准与IEC61850的引用和兼容关系.电力系统自动化,2004,28(19):88~91

[2] 朱永利,黄歌,刘培培等.基于IEC61850的电力远动信息网络化传愉的研究.继电器,2005,33(11):45~48

[3] 章宏甲,黄谊,王积伟.液压与气压传动.北京:机械工业出版社, 2002:112~118

[4] 成大先.机械设计手册(液压控制).单行本.北京:化学工业出版社, 2004:20~21

[5] 廖常初.PLC基础及应用.北京:机械工业出版社,2003:57~64

[6] 储云峰.西门子电气可编程序控制器原理及应用.北京:机械工业出版社,2006:75~84

[7] 汪巍,汪小凤.基于PLC的气动机械手研究.辽宁工程技术大学学报,2005,4(12):97~98

[8] 丁筱玲,赵立新. PLC在机械手控制系统上的应用.山东农业大学学报,2006,37(1):105~108

[9] 常斗南,王健琪,李全力.可编程控制原理.应用及通信基础.北京:机械工业出版社,1997:50~68

[10]王本轶.机电设备控制基础.北京:机械工业出版社,2005:96~112

[11]王春行.液压控制系统.北京:机械工业出版社,1999:12~45

[12]王永华.现代电气控制及 PLC 应用技术.北京:北京航空航天大学出版社,2003:75~90

[13]陈立定.电器控制于可编程控制器.广州:华南理工大学出版社,2001:67~77

[14]张林国,王淑英.可编程控制器技术.北京:高等教育出版社,2002:110~123

[15]周万珍,高鸿宾.PLC分析与设计应用.北京:电子工业出版社,2004:21~45

PLC和变频器在中央空调系统中的节能应用

摘要:介绍一种以PLC作为总控制部件,采用变频器控制中央空调冷冻水循环泵,构成恒压

循环供水;变频调速循环供水,以及用PLC控制一台软起动器分别起动4台井水泵的控制系统。

从而实现节能的目的,提高系统的可靠性,确保设备的安全运行。

关键词:PLC;变频器;软起动器;节能

尘亏 1引言

晶澳太阳能有限公司采用3台设备制冷机组用

于生产设备制冷,设备冷冻水循环泵2台,额定功

率30kW,一备一用。另采用2台空调制冷机组用

于环境制冷,空调冷冻水循环泵3台,额定功率

37kW,二用一备。两种循环水泵均为工频全速运转,

由于设备冷冻水采用传统的固定节流方式来满足生

产设备恒压供水要求和空调冷冻水采用固定节流的

方式实现调节室内温度的目的,造成了大量电能的

浪费,减短了水泵和阀门的使用寿命。现改造为由

PLC作为核心控制部件,由变频器和设备冷冻水泵

组成恒压供水系统。空调冷冻水根据温差△T控制

原理,由变频器,PID温差控制器,温度变送器,

循环泵组成温差△T控制变频调速系统。

现公司有4口水井,井水泵额定功率为75kW,

采用工频恒速运行。井水统一供给两种制冷机组冷

却水、其他车间用水、消防用水等。由于井水泵的

自耦降压起动方式控制机构宠大,故障率高。现改

造为由PLC控制一台软起动器分别起动4台井水泵

的起动方式。

2硬件配置

设计选用一台PLC作为核心控制部件,控制井

水泵的软起动,设备冷冻水恒压供水和空调冷冻水

的变频调速。其中,PLC选用Siemens公司的s7-200,

CPU选用S7-222,电源模块一块,数字扩展模块选

用EM223 24VDC 16输入/16输出。共24个输入点,

22个输出点。数字量输入主要有循环泵手/自动运行

方式的切换,循环水泵和井水泵的手动启/停操作和

井水流量反馈。数字输出点用于19点继电器输出和

两个冷冻水系统故障报警和井水流量报警。

变频器选用MicroMaster430系列2台,一台额

定功率30kW,用于控制设备冷冻水循环泵,另一

台额定功率37kW,用于控制空调冷冻水循环泵。

MicroMaster430系列变频器是风机类和水泵类的专用变频器,它拥有内置PID调节器,可以提高供水

压力的控制精度,改善系统的动态响应。软起动器

选用SIRIUS 3RW40系列一台,额定功率75kW,

用于软起动井水泵。PID温差控制器一台,选用

Transmit(全仕)G-2508系列PID双路温差控制器,

用于设定温差,并将PID处理后的4~20mA的模拟

信号送至变频器。压力变送器一个,用于检测设备

冷冻水的管网压力,并将压力信号反馈给变频器。

温度变送器两个,用于检测蒸发器两端的温度,并

将温度信号送至PID温差控制器。

3控制方案设计

3.1设备冷冻水恒压供水控制方案设计

控制原理如图2所示,设备冷冻水循环系统是

一个密闭的系统,手前由1#,2#循环泵供水,供水压力

要求在4.0±0.5Mbar。正常情况下,一台循环泵工

频全速运转时,出水压力可达7.5 Mbar。具有很大

的裕量,为避免电能的浪费,将设备冷冻水循环系

统设计为恒压供水系统。方案设计有手动/自动两种

工作方式。

在手动方式下,工作人员可以根据实际情况现

场决定起/停水泵的变频运行,并设最高优先控制

级,不受PLC的自动控制,以保证检修或出现故障

时的安全使用。

自动方式控制过程:将控制面板上设备冷冻水

泵的手动/自动开关,打到“自动”档,由井水泵的运

行给定PLC设备冷冻水泵的起动信号,PLC控制

KM11吸合,并与变频器通信,由变频器1F软起动

1#循环泵。压力变送器检测设备冷冻水管网压力,

转化为4~20mA的模拟信毕兄清号反馈至变频器1F,变频器1F通过内置的PID将检测压力与压力给定值

进行比较优化计算,输出运行频率调节1#循环泵

的转速。当压力变送器检测到的管网压力低于给定

压力时,变频器输出频率上升,增加1#泵的转速,

提高管网压力;反之,则频率下降,降低1#水泵的

转速。为防止备用泵在备用期间发生锈蚀现象,在

自动控制方式下,将1#、2#循环泵设置起始/停止周

期,使其自动定时循环使用。

为避免在水泵切换时,管网压力变化过大,应

采取必要的起/停时间协调措施,以尽量保证水压的

稳定,并在切换过程中,对压力检测信号进行一定

延时的“屏蔽”,防止变频器在较高的压力信号下不

起动。切换过程为:当设定的循环周期已到时,屏

蔽压力检测信号。将正在运行的水泵的频率升至

50Hz后切换为工频运行,之后将备用泵变频起动

(备用泵与运行泵不固定),在频率升至30Hz时,

切除工频泵,并取消对压力信号的屏蔽,恢复正常

运行,如此循环。在水泵切换时为了防止KM11与

KM12、KM21与KM22、KM11与KM22误动作同

时吸合发生故障,须将它们电气互锁和程序互锁。

当工作泵发生故障时,则立即停止工作泵,将备用

泵投入变频运行,并输出声光报警,提示工作人员

及时检修,当变频器发生故障时则停止水泵运行立

即输出报警。

3.2空调冷冻水系统循环泵变频调速控制方案设计

控制原理如图3所示,空调冷冻水系统的供回

水温度之差反映了冷冻水从室内携带热量的情况。

温差大,说明室内温度高,应提高冷冻水泵的转速,

加快冷冻水循环;反之,温差小,说明室内温度低,

可以适当降低冷冻水泵的转速,减缓冷冻水循环。

一般中央空调冷冻水系统设计温差为5oC~7oC。通

过温差△T控制,控制冷冻水系统的循环状态,可

以降低能源损耗,延长水泵的寿命。此外,空调冷

冻水系统是一个密闭的系统不必考虑恒压问题。

差控制器和循环泵温差闭环变频调速系统,控制冷

冻水泵的转速随着室内热负载的变化而变化。工作

过程为:温度变送器1、2分别在空调机组蒸发器输

入和输出端测得温度后,转换为4~20mA的标准信

号送入PID温差控制器,经PID与给定温差值比较

处理后,输出4~20mA的标准信号到变频器2F的

模拟量输入端,变频器2F输出相应频率,调节循环

水泵的转速,达到控制温度的目的,形成一个完整

的闭环控制系统。系统设计为手动和自动两种控制

方式手动方式工作过程与设备冷冻水泵手动工作方

式类似自动控制过程为:将控制面板上的空调冷冻

水循环泵手动/自动控制开关打到“自动”档,系统将

在自动方式下运行,由井水泵的运行给定PLC空调

冷冻水泵起动指令后,首先控制KM31吸合投入3#

循环泵变频运行,由温度变送器1、2检测蒸发器两

端的温度,并将温度信号送到PID温差控制器,PID

温差控制器将检测到的温差与给定温差比较处理后

的标准信号反馈给变频器2F。若检测到的温差大于

温差给定值时,变频器2F提升输出频率,提高水泵

的转速,加快冷冻水的循环;反之,则降低频率,

降低水泵转速。在自动运行方式下,将3台水泵设

定自动循环周期,定时自动循环使用。3台水泵的

开闭顺序为“先开先关”的顺序,当室内热负荷加

大时,若变频器2F的输出频率已升至50Hz,经一

定延时(如20min),当检测温差值仍大于温差给定

值时,通过PLC程序控制,把3#水泵切换为工频运

行,再投入4#水泵变频运行,如此循环,直到变频

运行5#水泵。当3台水泵被全部投入运行,且变频

泵频率已至50Hz,经延时若频率仍没下降,则由

PLC输出报警,提醒工作人员及时修改空调机组设

定值;相反,当室内热负荷减小时,变频器2F降低

输出频率,降低5#泵的转速,当频率降到20Hz时,

若检测温差值仍低于温差给定值时,经延时(如

20min),停止3#泵,依此类推。为保证变频器2F

只控制一台水泵,将KM31、KM41和KM51电气

互锁和程序互锁,同时须将KM31与KM32、KM41

与KM42、KM51与KM52电气互锁。当变频器2F

或水泵发生故障时,由PLC输出声光报警,提示工

作人员及时检修。

3.3井水泵软起动控制方案设计

如图1所示,利用PLC控制一台软起动器,即

可分别起动4台井水泵.将井水泵的运行方式设计为

手动方式。具体控制过程为:按下控制面板上相应的起动按钮,如按下6#泵起动按钮,PLC控制KM61

吸合并运行软起动器,软起动6#井水泵。当软起动

器起动完毕后利用其辅助触点反馈信号给PLC,

PLC断开KM61并立即闭合KM62,将6#井水泵切

入工频运行,并停止运行软起动器,依此类推。为

防止软起动器同时起动两台以上的井水泵,须将

KM61、KM71、KM81、KM91电气互锁和程序互

锁,另须将KM61与KM62、KM71与KM72、KM81

与KM82、KM91与KM92电气互锁,

4 S7-200与MM430变频器的通信设置

S7-200PLC作为核心控制部件,它有总线访问

权,可以读取或改写变频器的状态,控制软起动器

的运行状态,从而达到控制和监视设备运行状态的

目的。系统采用总线式拓扑结构,两台变频器采用

总线接插件连入总线。S7-200选用S7-222CPU,软

件采用WIN3.2。采用西门子Profibus屏蔽电缆及9

针D形网络连接头。利用S7-222的自由通信口功

能,即RS485通信口。由用户程序实现USS协议与

两台MM430变频器通信。在硬件连接完毕后,需

要对两台MM430变频器的通信参数进行设置,如

表1所示。

5软件设计

在应用设计中,PLC起到“总监总控”的角色,

可以对两台变频器的状态进行查询和控制。程序首

先将S7-222的通信口初始化为自由通信口方式,然

后程序进入一个顺序控制逻辑功能块。控制顺序为:

手动起动井水泵,在井水流量满足要求的情况下,

自动运行设备冷冻水循环泵和空调冷冻水循环泵。

在PLC的程序中设计了井水泵的手动软起动井水泵

控制、设备冷冻水循环泵和空调冷冻水循环泵自动

定时循环程序;同时设计了设备冷冻水循环泵和空调冷冻水循环泵的手动控制程序。在本系统中采用

了变频器自身控制的方法,这样就省去了对PLC的

PID算法的编程。

6结论

本系统设计实际应用运行一个夏季后,得出与

上个季度循环水泵电能消耗数据及故障次数如表2

所示。数据显示,系统改造后节能达30%以上,并

且在春,秋、冬季节空调冷冻水循环泵的节能效果

会更加明显,并且故障发生次数大幅下降。因此采

用调速调节流量的方式,可以大幅度降低截流能量

的损耗,具有显著的节能效果,并能延长水泵的寿

命,提高系统运行的稳定性,降低生产成本,提高

生产效率。

参考文献

[1]王仁祥,王小曼.变频器在中央空调中的应用.通用变

频器选型,应用与维护.北京:人民邮电出版社,2002:

176-202.

[2]西门子有限公司.MM430通信设置.MICROMASTER

430使用大全.2003.12.

[3]蔡行健.S7-200模块.深入浅出西门子S7-200PLC.

北京:北京航空航天出版社,2003:95-125.

[4]原魁,刘伟强.变频器基础及应用.北京:冶金工业出

版社,2006.

[5]罗宇航.流行PLC实用程序及设计(西门子S7-200系

列).西安:西安电子科技大学出版社,2004.

叮叮猫进士 回答采纳率:42.2% 20:38 随着我国经济的高速发展,交流变频调速技术已经进入一个崭新的时代,其应用越来越广泛。而电梯作为现代高层建筑的垂直交通工具,与人们的生活紧密相关。随着人们对其要求的提高,电梯得到了快速的发展,其拖动技术已经发展到了变压变频调速,其逻辑控制也由PLC代替原来的继电器控制。

通过对变频器和PLC的合理选择和设计,大大提高了电梯的控制水平,并改善了电梯运行的舒适感,使电梯得到了较为理想的控制和运行效果。并利用旋转编码器发出的脉冲信号构成位置反馈,实现电梯的精确位移控制。通过PLC程序设计实现楼层计数、换速信号、开门控制和平层信号的数字控制,取代井道位置检测装置,提高了系统的可靠性和平层精度。该系统具有先进、可靠、经济的特色。该电梯控制系统具有司机运行和无司机运行的功能,并且具有指层、厅召唤、选层、选向等功能和具有集选控制的特点。

关键词: 电梯; PLC; 变频调速; 旋转编码器

ABSTRACT

As China's rapid economic development, exchange of VVVF technology has entered a new era, its application more widely. The elevator as a modern high-rise building the vertical transport, and is closely related to people's lives, as people raise their requirements, the lift has been the rapid development of its technology has developed to drag the PSA Frequency Control, the logic control Also by the PLC to replace the original control relays.

Through the PLC chip and a reasonable choice and design, Greatly improving the control of the elevator, the elevator and to improve the operation of comfort, so that the lift has been better control and operation results. And using a rotary encoder pulse a position feedback, and lift the precise control of displacement. PLC program designed to achieve through the floor count, for speed signal, to open the door of peace control of the digital control signals to replace Wells Road location detection devices, improving the reliability of the system accuracy of the peace. The system has advanced, reliable and economic characteristics.The elevator control system has run drivers and drivers operating without that manual and automatic features, and with that layer, called the Office for the election of the Commission to function, with election-control characteristics.

Keywords: lift ; PLC; VVVF; rotary encoder

目 录

1 绪论 1

1.1 PLC控制交流变频电梯的简介 1

1.2 电梯控制的国内外发展现状 2

1.3 题目选择的来源与意义 3

1.4 本文所做的主要工作 3

2 电梯设备的介绍 4

2.1 电梯设备 4

2.1.1 电梯的分类 4

2.1.2 电梯的主要参数 4

2.1.3 电梯的安全保护装置 5

3 变频器的选择及其参数计算 7

3.1 变频器的分类 7

3.2 变频器的选择 7

3.2.1 变频器品牌型号的选择 7

3.2.2 变频器规格的选择 8

3.2.3 选择变频器应满足的条件 8

3.3 VS-616G5型通用型变频器 8

3.4 变频器有关参数的计算 10

3.4.1 变频器容量的计算 10

3.4.2 变频器制动电阻的计算 11

4 PLC的选择及硬件开发 12

4.1 PLC简介 12

4.2 控制器件的选择 14

4.2.1 PLC的选择 14

4.2.2 轿厢位置的检测元件 14

4.3 PLC硬件系统的设计 16

4.3.1 设计思路 19

4.3.2 I/O点数的分配及机型的选择 21

5 系统软件开发 25

5.1 电梯的三个工作状态 25

5.1.1 电梯的自检状态 25

5.1.2 电梯的正常工作状态 25

5.1.3 电梯的强制工作状态 26

5.2 系统的软件开发方法确定 26

5.2.1 软件设计特点 26

5.2.2 软件流程 27

5.2.3 模块化编程 29

5.3 系统的软件开发 30

5.3.1 电路的开关门运行回路 30

5.3.2 电梯的外召唤信号的登记消除及显示回路 33

5.3.3 利用旋转编码器获取楼层信息 35

5.3.4 呼梯铃控制与故障报警 35

5.3.5 电梯的消防运行回路 36

结 论 38

致 谢 39

参考文献 40

附录 Ⅰ VS-616G5型变频器的常用参数 41

附录 Ⅱ VS-616G5变频器主要参数设置表 42

附录 Ⅲ 梯形图 43

PLC论文相对来说比较简单,只要清枣做熟悉一个,其他的触类旁通。。硬件图用VISIO可以答亩拆很快的画出,软件编程也不复杂。难点在于和组态王结合进行耐亮相应的实时监测和控制。

百度文库